# The $D_{2\rm h}$ Distortion around the $\rm Cu^{2+}$ Center in $\rm Cu_{0.5}Zr_2(PO_4)_3$ Single Crystals

Y. Huang, M. L. Du, C. Ni, and J. F. Wen

Department of Physics, Southwest University for Nationalities, Chengdu 610041, P. R. China

Reprint requests to Dr. M. L. D.; E-mail: duml@mail.sc.cninfo.net

Z. Naturforsch. 60a, 193 – 195 (2005); received September 16, 2004

A formula for the calculation of the three g factors of  $3d^9$  ions in an orthorhombic field  $D_{2h}$  has been derived. Using it to investigate the EPR g factors of the  $Cu^{2+}$  ions in single crystals of  $Cu_{0.5}Zr_2(PO_4)_3$ , the variation of the g factors on changing the angle g between the g- and g-axis has been explained. According to that, it can be confirmed that the angle g of the g- distortion is about g- PACS: 71.70C; 76.30F

Key words:  $Cu_{0.5}Zr_2(PO_4)_3$  Crystal; Gyromagnetic Factor;  $D_{2h}$  Distortion.

### 1. Introduction

Cu<sub>0.5</sub>Zr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> crystals belong to the Nasicon-type family with a three-dimensional network built of PO<sub>4</sub> tetrahedra sharing corners with ZrO<sub>6</sub> octahedra [1]. The three-dimensional network can be considered as being made of infinite ribbons linked by PO<sub>4</sub> tetrahedra. They are used in chemistry and ceramic industry because of their catalytic and low thermal expansion properties, as well the ionic conductivity of their derivatives [2–8].

Taoufik et al. [9] have investigated the magnetic susceptibility and EPR of  $Cu_{0.5}Zr_2(PO_4)_3$  crystals. They contain an important amount of paramagnetic  $Cu^{2+}$  ions, and EPR spectra give information about local paramagnetic environments. Their structure shows a monoclinic distortion compared to that of  $NaZr_2(PO_4)_3$  [6]. It is suggested that the field surrounding the  $Cu^{2+}$  ions is orthorhombic  $(D_{2h})$  rather than tetragonal  $(D_{4h})$  [9, 10] from the observed optical spectrum of the  $Cu^{2+}$  ions. But these observations didn't confirm the distortion structure when the crystal field varies from  $D_{4h}$  to  $D_{2h}$ .

In this paper, using experimental EPR results, further studies have been done to observe the distortion tendency from  $D_{4h}$  to  $D_{2h}$ .

## 2. The g Factors of $3d^9$ in the Symmetry of $D_{2h}$

The Cu<sup>2+</sup> ions lie in the interspace of the threedimensional network and are surrounded by six oxygen

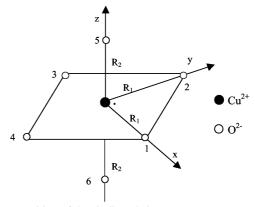


Fig. 1. Position of the six ligands in  $D_{2h}$ .

atoms [2]. Taoufik et al. assumed that it is the  $D_{2h}$  symmetry [9] shown in Fig. 1, where the angle  $\alpha$  between the x- and y-axis lies in the plane perpendicular to the z-axis. For the  $Cu_{0.5}Zr_2(PO_4)_3$  crystal  $R_1=1.95$  Å and  $R_2=2.82$  Å have been given in [2], but the resulting angle  $\alpha$  was not confirmed.

It is known that  $Cu^{2+}$  belongs to the electron system  $3d^9$ . Its energy level will be split into  $^2E$  and  $^2T_2$  in a cubic field. The ground state is  $^2E$  in octahedral symmetry. In the orthorhombic field  $D_{2h}$  the energy levels will be split further.  $^2T_2$  is split into  $B_1(\zeta)$ ,  $B_2(\eta)$ , and  $B_3(\xi)$ .  $^2E$  is split into  $A_1(\varepsilon)$  and  $A_1(\theta)$ .  $A_1$ ,  $B_1$ ,  $B_2$ , and  $B_3$  are the irreducible representation in  $D_{2h}$  symmetry.  $\varepsilon$  and  $\theta$  indicate the components of  $^2E$ .  $\zeta$ ,  $\eta$ , and  $\xi$  indicate the components of  $^2T_2$ .  $A_1(\varepsilon)$  is the ground state in the  $Cu_{0.5}Zr_2(PO_4)_3$  crystal [11].

 $0932-0784 / 05 / 0300-0193 \$ 06.00 \textcircled{c} 2005 \ Verlag \ der \ Zeitschrift \ für \ Naturforschung, \ Tübingen \cdot http://znaturforsch.com/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/r$ 

In an orthorhombic field, the spin Hamiltonian of the 3d<sup>9</sup> ion can be described by the expression

$$H_s = g_x \mu_{\rm B} H_x \hat{S}_x + g_y \mu_{\rm B} H_y \hat{S}_y + g_z \mu_{\rm B} H_z \hat{S}_z,$$
 (1)

where  $g_i$  (i = x, y, z) indicates the components of the g factor,  $\mu_B$  is the Bohr magneton,  $\hat{S}_i$  (i = x, y, z) is the spin operator, and  $H_i$  (i = x, y, z) indicates the components of the magnetic field along the x-, y- and z-axes.

Using the perturbation theory, the g factors can be obtained by the formula [12]

$$g_i = g_s - 2\lambda \Lambda_{ii},\tag{2}$$

$$\Lambda_{ij} = \sum_{n \neq 0} \frac{\langle 0|\widehat{L}_i|n\rangle\langle n|\widehat{L}_j|0\rangle}{E_n^{(0)} - E_0^{(0)}}, \quad (i, j = x, y, z), \quad (3)$$

where  $g_s = 2.0023$  is the value of free electron and  $\lambda$  is the spin-orbit coupling coefficient of the 3d<sup>9</sup> ion. The relation between  $\lambda$  and the one-electron spin-orbit coupling coefficient  $\zeta_d$  is  $\lambda = -\zeta_d$ . Using (2) and introducing the average covalent factor N [13] to describe the covalency, the g factors of the 3d<sup>9</sup> ion in  $D_{2h}$  symmetry can be obtained as

$$g_z = g_s - \frac{8\zeta_d N^4}{E(\zeta) - E(\varepsilon)},\tag{4}$$

$$g_x = g_s - \frac{2\zeta_d N^4}{E(\xi) - E(\varepsilon)},\tag{5}$$

$$g_y = g_s - \frac{2\zeta_d N^4}{E(\eta) - E(\varepsilon)},\tag{6}$$

where the energy denominators are

$$E(\zeta) - E(\varepsilon) = -\frac{2}{3}\sqrt{\frac{10}{7}}B_{44},\tag{7}$$

$$E(\eta) - E(\varepsilon) = -\frac{1}{3}\sqrt{\frac{10}{7}}B_{44} + \frac{2\sqrt{10}}{21}B_{42} - \frac{2}{21}B_{40} + \frac{\sqrt{6}}{7}B_{22} + \frac{2}{7}B_{20},$$
(8)

$$E(\xi) - E(\varepsilon) = -\frac{1}{3}\sqrt{\frac{10}{7}}B_{44}, -\frac{2\sqrt{10}}{21}B_{42} - \frac{2}{21}B_{40} - \frac{\sqrt{6}}{7}B_{22} + \frac{2}{7}B_{20}.$$
 (9)

The crystal-field parameter  $B_{kq}$  is related to the crystal structure parameter. In  $D_{2h}$  symmetry the crystal-field parameters  $B_{44}$ ,  $B_{42}$ ,  $B_{40}$ ,  $B_{22}$ , and  $B_{20}$  are related

to the band lengths  $R_1$ ,  $R_2$ , and the angle  $\alpha$ . They can be obtained from the expressions

$$B_{44} = B_{4-4} = \frac{-1}{4} \sqrt{\frac{25}{2}} (1 + \cos 4\alpha) \frac{eq}{R_1^5} \langle r^4 \rangle,$$
 (10)

$$B_{42} = B_{4-2} = \frac{1}{2} \sqrt{\frac{5}{2}} (1 + \cos 2\alpha) \frac{eq}{R_1^5} \langle r^4 \rangle, \quad (11)$$

$$B_{40} = \frac{-1}{2} \left( \frac{3}{R_1^5} + \frac{4}{R_2^5} \right) eq \langle r^4 \rangle, \tag{12}$$

$$B_{22} = B_{2-2} = -\sqrt{\frac{3}{2}}(1 + \cos 2\alpha)\frac{eq}{R_3^3}\langle r^2 \rangle,$$
 (13)

$$B_{20} = -2\left(\frac{1}{R_2^3} + \frac{1}{R_2^3}\right) eq\langle r^2 \rangle,$$
 (14)

where q is the charge of the ligand, e the charge of the electron, and  $\langle r^2 \rangle$  and  $\langle r^4 \rangle$  are the expectation values in the crystal.

## 3. The $D_{2h}$ Distortion Structure

Considering the average covalent factor N, the relations between the expectation values  $\langle r^k \rangle$  in the crystal and  $\langle r^k \rangle$ 0 in the free ion are

$$\langle r^2 \rangle = N^2 \langle r^2 \rangle 0, \quad \langle r^4 \rangle = N^2 \langle r^4 \rangle 0,$$
 (15)

and the relation between the spin-orbit coupling coefficient  $\zeta_d$  in the crystal and  $\zeta_d{}^0$  in the free ion is

$$\zeta_d = N^2 \zeta_d^{\ 0}. \tag{16}$$

The expectation values  $\langle r^k \rangle 0$  in a free Cu<sup>2+</sup> ion are [14]

$$\langle r^2 \rangle 0 = 3.11 a_0^2, \quad \langle r^4 \rangle 0 = 44.80 a_0^4,$$
 (17)

where  $a_0$  is the Bohr radius. The spin-orbit coupling coefficient  $\zeta_d^0$  in the free Cu<sup>2+</sup> is [15]

$$\zeta_d^{\ 0} = 829 \text{ cm}^{-1}.$$
 (18)

Then the g factors can be calculated. From (10)–(14), the g factors depend on the band lengths  $R_1$ ,  $R_2$ , and the angle  $\alpha$ . When  $\alpha$  is  $90^{\circ}$ ,  $g_x$  and  $g_y$  are equal. When  $\alpha$  is not  $90^{\circ}$ , the difference between  $g_x$  and  $g_y$  is not zero. Moreover, we can get the varying tendency of the g factors with the angle  $\alpha$ , when the crystal field around  $Cu^{2+}$  is distorted from  $D_{4h}$  to  $D_{2h}$ . The results are shown in Figure 2.

Table 1. Comparison of the theoretical and experimental results ( $\alpha=62.6^{\circ}, N=0.98$ )

| g Factor | Calculated | Experimental |
|----------|------------|--------------|
| $g_x$    | 2.0519     | 2.068        |
| $g_{v}$  | 2.0594     | 2.071        |
| $g_z$    | 2.3772     | 2.374        |

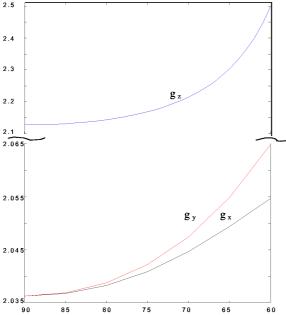


Fig. 2. Dependence of the components of the g factor on the angle  $\alpha$  (N=0.98).

As shown in Fig. 2, when the angle  $\alpha$  decreases from 90°,  $g_z$  increases. At  $\alpha = 90^\circ$  i. e. when the field is  $D_{4h}$ ,  $g_x$  and  $g_y$  are equal. When  $\alpha$  decreases from 90°,

- [1] L. O. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822 (1968).
- [2] I. Bussereau, R. Olazcuaga, G. Le Flem, and P. Hagen-muller, Eur. J. Solid State Inorg. Chem. 26, 383 (1989).
- [3] E. Fargin, I. Bussereau, R. Olazuaga, G. Le Flem, C. Cartier, and H. Dexpert, J. Solid State Chem. 112, 176 (1994).
- [4] A. El Jazouli, Adv. Mater. Res. 1-2, 105 (1994).
- [5] I. Bennouna, S. Arsalane, R. Brochu, M. R. Lee, J. Chassaing, and M. Quarton, J. Solid State Chem. 112, 224 (1994).
- [6] A. Serghini, R. Brochu, M. Ziyad, and J. C. Vedrine, J. Alloys Compd. 188, 60 (1992).
- [7] A. El Jazouli, M. Alami, R. Brochu, J. M. Dance, G. Le Flem, and O. Hagenmuller, J. Solid State Chem. 71, 444 (1987).

 $g_x$  and  $g_y$  increase, whereby  $g_y$  increases more than  $g_x$ . According to the EPR experimental data,  $g_x$  and  $g_y$  are different. It shows that the crystal field around the center of the Cu<sup>2+</sup> ion is  $D_{2h}$ . This confirms Taoufik's analysis [9]. From (4)–(6), the values of  $g_x$ ,  $g_y$ , and  $g_z$  are related to the crystal structure data  $R_1$ ,  $R_2$ , and  $\alpha$ . Taking the angle  $\alpha$  as the fitting parameter, we can fit the experimental values of the g factors ( $g_z = 2.374$ ,  $g_x = 2.068$ ,  $g_y = 2.071$ ) [9]. The results are shown in Table 1. The theoretical values are very close to the experimental ones, when  $\alpha$  is about  $62.6^\circ$ .

Thereby it is reasonable and satisfactory to explain the paramagnetic g factors of  $Cu^{2+}$  ions in  $Cu_{0.5}Zr_2(PO_4)_3$  crystals. The crystal field around the central  $Cu^{2+}$  ion is  $D_{2h}$  indeed. From the EPR experiment, the angle  $\alpha$  is about  $62.6^{\circ}$ .

#### 4. Conclusion

In this paper, formulas for the calculation of the three g factors of  $3d^9$  ions in an orthorhombic field  $D_{2h}$  have been given. They are related to the angle  $\alpha$  and the band lengths  $R_1$  and  $R_2$  of the crystal structure. With these formulas, the tendency of the g factors to vary with the angle  $\alpha$  has been explained for  $Cu_{0.5}Zr_2(PO_4)_3$  crystal. The best fitting value of the angle  $\alpha$  is  $62.6^\circ$ .

#### Acknowledgement

The project is supported by the National Science Foundation of China (Grant No. 50372053).

- [8] A. Serghini, R. Brochu, M. Ziyad, M. Loukah, and J. C. Vedrine, J. Chem. Soc. Faraday Trans. 87 (15), 2487 (1991).
- [9] I. Taoufik, M. Haddad, A. Nadiri, R. Brochu, and R. Berger, J. Phys. Chem. Solids. 60, 701 (1999).
- [10] R. Debnath and J. Chaudhuri, J. Phys. Chem. Glasses **36** (4), (1995) 160.
- [11] I. S. Ahuja and S. Tripathi, Spectrochim, Acta Part A: 47 (5), (1991) 637.
- [12] M. G. Zhao, Ligand Field Theory, Guizhou People Press, Guiyang (China), 328 (1985) (in Chinese).
- [13] M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev. B 27, 1516 (1983).
- [14] M. G. Zhao, Z. X. Hu, and Q. Z. Huang. J. Geochem (China) 1, 44 (1979) (in Chinese).
- [15] I. H. Parker, J. Phys. C 4, 2967 (1971).